36  Reshaping

library(data.table)
options(datatable.print.class = TRUE)

36.1 Long to wide using dcast()

36.1.1 Example 1: key-value pairs

Using the same example seen in Chapter 26:

dat_long <- data.frame(
    Account_ID = c(8001, 8002, 8003, 8004, 8001, 8002, 8003, 8004, 
            8001, 8002, 8003, 8004, 8001, 8002, 8003, 8004), 
    Age = c(67.8017038366664, 42.9198507293701, 46.2301756642422, 
            39.665983196671, 67.8017038366664, 42.9198507293701, 
            46.2301756642422, 39.665983196671, 67.8017038366664, 
            42.9198507293701, 46.2301756642422, 39.665983196671, 
            67.8017038366664, 42.9198507293701, 46.2301756642422, 
            39.665983196671), 
    Admission = c("ED", "Planned", "Planned", "ED", "ED", "Planned", 
            "Planned", "ED", "ED", "Planned", "Planned", "ED", "ED", "Planned", 
            "Planned", "ED"), 
    Lab_key = c("RBC", "RBC", "RBC", "RBC", "WBC", "WBC", "WBC", "WBC", 
            "Hematocrit", "Hematocrit", "Hematocrit", "Hematocrit", 
            "Hemoglobin", "Hemoglobin", "Hemoglobin", "Hemoglobin"), 
    Lab_value = c(4.63449321082268, 3.34968550627897, 4.27037213597765, 
            4.93897736897793, 8374.22887757195, 7612.37380499927, 
            8759.27855519425, 6972.28096216548, 36.272693147236, 
            40.5716317809522, 39.9888624177955, 39.8786884058422, 
            12.6188444991545, 12.1739747363806, 15.1293426442183, 
            14.8885696185238)
)
dat_long_dt <- as.data.table(dat_long)
dat_long_dt
    Account_ID      Age Admission    Lab_key   Lab_value
         <num>    <num>    <char>     <char>       <num>
 1:       8001 67.80170        ED        RBC    4.634493
 2:       8002 42.91985   Planned        RBC    3.349686
 3:       8003 46.23018   Planned        RBC    4.270372
 4:       8004 39.66598        ED        RBC    4.938977
 5:       8001 67.80170        ED        WBC 8374.228878
 6:       8002 42.91985   Planned        WBC 7612.373805
 7:       8003 46.23018   Planned        WBC 8759.278555
 8:       8004 39.66598        ED        WBC 6972.280962
 9:       8001 67.80170        ED Hematocrit   36.272693
10:       8002 42.91985   Planned Hematocrit   40.571632
11:       8003 46.23018   Planned Hematocrit   39.988862
12:       8004 39.66598        ED Hematocrit   39.878688
13:       8001 67.80170        ED Hemoglobin   12.618844
14:       8002 42.91985   Planned Hemoglobin   12.173975
15:       8003 46.23018   Planned Hemoglobin   15.129343
16:       8004 39.66598        ED Hemoglobin   14.888570

data.table’s long to wide procedure is defined with a convenient formula notation:

dat_long2wide_dt <- dcast(dat_long_dt,
                          Account_ID + Age + Admission ~ Lab_key,
                          value.var = "Lab_value")
dat_long2wide_dt
Key: <Account_ID, Age, Admission>
   Account_ID      Age Admission Hematocrit Hemoglobin      RBC      WBC
        <num>    <num>    <char>      <num>      <num>    <num>    <num>
1:       8001 67.80170        ED   36.27269   12.61884 4.634493 8374.229
2:       8002 42.91985   Planned   40.57163   12.17397 3.349686 7612.374
3:       8003 46.23018   Planned   39.98886   15.12934 4.270372 8759.279
4:       8004 39.66598        ED   39.87869   14.88857 4.938977 6972.281

Instead of listing all variables you can use ..., which corresponds to all variables not otherwise mentioned in the formula or in value.var:

dcast(dat_long_dt,
      ... ~ Lab_key,
      value.var = "Lab_value")
Key: <Account_ID, Age, Admission>
   Account_ID      Age Admission Hematocrit Hemoglobin      RBC      WBC
        <num>    <num>    <char>      <num>      <num>    <num>    <num>
1:       8001 67.80170        ED   36.27269   12.61884 4.634493 8374.229
2:       8002 42.91985   Planned   40.57163   12.17397 3.349686 7612.374
3:       8003 46.23018   Planned   39.98886   15.12934 4.270372 8759.279
4:       8004 39.66598        ED   39.87869   14.88857 4.938977 6972.281

36.1.2 Example 2: Timepoints

Another simple synthetic dataset:

dt_long <- data.table(
        ID = c(1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L), 
        Timepoint = factor(
                c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L),
                labels = c("Timepoint_A", "Timepoint_B", "Timepoint_C")
        ), 
        Score = c(11L, 12L, 13L, 14L, 21L, 22L, 23L, 24L, 51L, 52L, 53L, 54L)
)
dt_long
       ID   Timepoint Score
    <int>      <fctr> <int>
 1:     1 Timepoint_A    11
 2:     2 Timepoint_A    12
 3:     3 Timepoint_A    13
 4:     4 Timepoint_A    14
 5:     1 Timepoint_B    21
 6:     2 Timepoint_B    22
 7:     3 Timepoint_B    23
 8:     4 Timepoint_B    24
 9:     1 Timepoint_C    51
10:     2 Timepoint_C    52
11:     3 Timepoint_C    53
12:     4 Timepoint_C    54

Using dcast() again to convert to wide format:

dt_long
       ID   Timepoint Score
    <int>      <fctr> <int>
 1:     1 Timepoint_A    11
 2:     2 Timepoint_A    12
 3:     3 Timepoint_A    13
 4:     4 Timepoint_A    14
 5:     1 Timepoint_B    21
 6:     2 Timepoint_B    22
 7:     3 Timepoint_B    23
 8:     4 Timepoint_B    24
 9:     1 Timepoint_C    51
10:     2 Timepoint_C    52
11:     3 Timepoint_C    53
12:     4 Timepoint_C    54
dcast(dt_long, ID ~ Timepoint,
      value.var = "Score")
Key: <ID>
      ID Timepoint_A Timepoint_B Timepoint_C
   <int>       <int>       <int>       <int>
1:     1          11          21          51
2:     2          12          22          52
3:     3          13          23          53
4:     4          14          24          54

36.1.3 dcast() + aggregate

If your ID ~ Timepoint combination does not define a unique row in your input dataset, you need to specify an aggregate function.

For example, suppose you have four subjects with IDs “A”, “B”, “C”, “D” who had a couple variables measured 3 times in the AM and 3 times in the PM.

dt_long2 <- data.table(ID = rep(LETTERS[1:4], each = 6),
                      Timepoint = rep(c("AM", "PM"), length.out = 24, each = 3),
                      Var1 = rnorm(24, mean = 10),
                      Var2 = rnorm(24, mean = 20))

dt_long2[sample(24, size = 4), Var1 := NA]
dt_long2[sample(24, size = 4), Var2 := NA]
dt_long2
        ID Timepoint      Var1     Var2
    <char>    <char>     <num>    <num>
 1:      A        AM  9.181079 20.17476
 2:      A        AM        NA 22.59615
 3:      A        AM  9.781764 19.57141
 4:      A        PM 10.039389 21.41549
 5:      A        PM  9.782060 19.18831
 6:      A        PM  9.813699 19.42839
 7:      B        AM  9.277730       NA
 8:      B        AM        NA 19.76434
 9:      B        AM  9.167315 21.06945
10:      B        PM  9.456382 20.02977
11:      B        PM 11.946675 21.60579
12:      B        PM 10.672535 19.76325
13:      C        AM        NA 22.48464
14:      C        AM  8.887012 18.18991
15:      C        AM 10.803414       NA
16:      C        PM 10.257296 20.39847
17:      C        PM  8.609107 21.58825
18:      C        PM  9.556412 18.78391
19:      D        AM        NA 19.01404
20:      D        AM  9.121972 19.58881
21:      D        AM 10.018011 20.06586
22:      D        PM  9.628977       NA
23:      D        PM 10.387528       NA
24:      D        PM  9.006255 20.79668
        ID Timepoint      Var1     Var2

To convert the above data.table to wide format and get mean AM and PM values using the fun.aggregate argument:

dcast(dt_long2,
      ID ~ Timepoint,
      value.var = c("Var1", "Var2"),
      fun.aggregate = mean, na.rm = TRUE)
Key: <ID>
       ID  Var1_AM   Var1_PM  Var2_AM  Var2_PM
   <char>    <num>     <num>    <num>    <num>
1:      A 9.481421  9.878383 20.78077 20.01073
2:      B 9.222522 10.691864 20.41690 20.46627
3:      C 9.845213  9.474272 20.33727 20.25688
4:      D 9.569991  9.674253 19.55624 20.79668

You can apply multiple aggregating functions by passing a list to fun.aggregate:

dcast(dt_long2,
      ID ~ Timepoint,
      value.var = c("Var1", "Var2"),
      fun.aggregate = list(mean, max, min), na.rm = TRUE)
Key: <ID>
       ID Var1_mean_AM Var1_mean_PM Var2_mean_AM Var2_mean_PM Var1_max_AM
   <char>        <num>        <num>        <num>        <num>       <num>
1:      A     9.481421     9.878383     20.78077     20.01073    9.781764
2:      B     9.222522    10.691864     20.41690     20.46627    9.277730
3:      C     9.845213     9.474272     20.33727     20.25688   10.803414
4:      D     9.569991     9.674253     19.55624     20.79668   10.018011
   Var1_max_PM Var2_max_AM Var2_max_PM Var1_min_AM Var1_min_PM Var2_min_AM
         <num>       <num>       <num>       <num>       <num>       <num>
1:    10.03939    22.59615    21.41549    9.181079    9.782060    19.57141
2:    11.94668    21.06945    21.60579    9.167315    9.456382    19.76434
3:    10.25730    22.48464    21.58825    8.887012    8.609107    18.18991
4:    10.38753    20.06586    20.79668    9.121972    9.006255    19.01404
   Var2_min_PM
         <num>
1:    19.18831
2:    19.76325
3:    18.78391
4:    20.79668

Note how na.rm = TRUE was successfully applied to all aggregating functions

36.2 Wide to long: melt()

36.2.1 Example 1: Timepoints

dt_wide <- data.table(
        ID = 1:4,
        Timepoint_A = 11:14,
        Timepoint_B = 21:24,
        Timepoint_C = 51:54)
dt_wide
      ID Timepoint_A Timepoint_B Timepoint_C
   <int>       <int>       <int>       <int>
1:     1          11          21          51
2:     2          12          22          52
3:     3          13          23          53
4:     4          14          24          54

Use melt() to convert from wide to long format:

dt_long <- melt(
        dt_wide, 
        id.vars = "ID",
        measure.vars = 2:4, # defaults to all non-id columns
        variable.name = "Timepoint",
        value.name = c("Score"))
dt_long
       ID   Timepoint Score
    <int>      <fctr> <int>
 1:     1 Timepoint_A    11
 2:     2 Timepoint_A    12
 3:     3 Timepoint_A    13
 4:     4 Timepoint_A    14
 5:     1 Timepoint_B    21
 6:     2 Timepoint_B    22
 7:     3 Timepoint_B    23
 8:     4 Timepoint_B    24
 9:     1 Timepoint_C    51
10:     2 Timepoint_C    52
11:     3 Timepoint_C    53
12:     4 Timepoint_C    54

36.2.2 Example 2: Key-value pairs

Using the same synthetic data as in Chapter 26:

set.seed(2022)
dt_wide <- data.table(
  Account_ID = c(8001, 8002, 8003, 8004),
  Age = rnorm(4, mean = 57, sd = 12),
  RBC = rnorm(4, mean = 4.8, sd = 0.5),
  WBC = rnorm(4, mean = 7250, sd = 1500),
  Hematocrit = rnorm(4, mean = 40.2, sd = 4),
  Hemoglobin = rnorm(4, mean = 13.6, sd = 1.5),
  Admission = sample(c("ED", "Planned"), size = 4, replace = TRUE)
)
dt_wide
   Account_ID      Age      RBC      WBC Hematocrit Hemoglobin Admission
        <num>    <num>    <num>    <num>      <num>      <num>    <char>
1:       8001 67.80170 4.634493 8374.229   36.27269   12.61884        ED
2:       8002 42.91985 3.349686 7612.374   40.57163   12.17397   Planned
3:       8003 46.23018 4.270372 8759.279   39.98886   15.12934   Planned
4:       8004 39.66598 4.938977 6972.281   39.87869   14.88857   Planned

Convert from wide to long format using melt() again:

dt_long <- melt(dt_wide,
                id.vars = c(1:2, 7),
                measure.vars = 3:6,
                variable.name = "Lab_key",
                value.name = "Lab_value")
dt_long
    Account_ID      Age Admission    Lab_key   Lab_value
         <num>    <num>    <char>     <fctr>       <num>
 1:       8001 67.80170        ED        RBC    4.634493
 2:       8002 42.91985   Planned        RBC    3.349686
 3:       8003 46.23018   Planned        RBC    4.270372
 4:       8004 39.66598   Planned        RBC    4.938977
 5:       8001 67.80170        ED        WBC 8374.228878
 6:       8002 42.91985   Planned        WBC 7612.373805
 7:       8003 46.23018   Planned        WBC 8759.278555
 8:       8004 39.66598   Planned        WBC 6972.280962
 9:       8001 67.80170        ED Hematocrit   36.272693
10:       8002 42.91985   Planned Hematocrit   40.571632
11:       8003 46.23018   Planned Hematocrit   39.988862
12:       8004 39.66598   Planned Hematocrit   39.878688
13:       8001 67.80170        ED Hemoglobin   12.618844
14:       8002 42.91985   Planned Hemoglobin   12.173975
15:       8003 46.23018   Planned Hemoglobin   15.129343
16:       8004 39.66598   Planned Hemoglobin   14.888570

or using column names:

dt_long <- melt(dt_wide,
                id.vars = c("Account_ID", "Age", "Admission"),
                measure.vars = c("RBC", "WBC", "Hematocrit", "Hemoglobin"),
                variable.name = "Lab_key",
                value.name = "Lab_value")
dt_long
    Account_ID      Age Admission    Lab_key   Lab_value
         <num>    <num>    <char>     <fctr>       <num>
 1:       8001 67.80170        ED        RBC    4.634493
 2:       8002 42.91985   Planned        RBC    3.349686
 3:       8003 46.23018   Planned        RBC    4.270372
 4:       8004 39.66598   Planned        RBC    4.938977
 5:       8001 67.80170        ED        WBC 8374.228878
 6:       8002 42.91985   Planned        WBC 7612.373805
 7:       8003 46.23018   Planned        WBC 8759.278555
 8:       8004 39.66598   Planned        WBC 6972.280962
 9:       8001 67.80170        ED Hematocrit   36.272693
10:       8002 42.91985   Planned Hematocrit   40.571632
11:       8003 46.23018   Planned Hematocrit   39.988862
12:       8004 39.66598   Planned Hematocrit   39.878688
13:       8001 67.80170        ED Hemoglobin   12.618844
14:       8002 42.91985   Planned Hemoglobin   12.173975
15:       8003 46.23018   Planned Hemoglobin   15.129343
16:       8004 39.66598   Planned Hemoglobin   14.888570

If desired, you can set the ID column as the key, which will sort the data.table by its values:

setorder(dt_long, "Account_ID")
dt_long
    Account_ID      Age Admission    Lab_key   Lab_value
         <num>    <num>    <char>     <fctr>       <num>
 1:       8001 67.80170        ED        RBC    4.634493
 2:       8001 67.80170        ED        WBC 8374.228878
 3:       8001 67.80170        ED Hematocrit   36.272693
 4:       8001 67.80170        ED Hemoglobin   12.618844
 5:       8002 42.91985   Planned        RBC    3.349686
 6:       8002 42.91985   Planned        WBC 7612.373805
 7:       8002 42.91985   Planned Hematocrit   40.571632
 8:       8002 42.91985   Planned Hemoglobin   12.173975
 9:       8003 46.23018   Planned        RBC    4.270372
10:       8003 46.23018   Planned        WBC 8759.278555
11:       8003 46.23018   Planned Hematocrit   39.988862
12:       8003 46.23018   Planned Hemoglobin   15.129343
13:       8004 39.66598   Planned        RBC    4.938977
14:       8004 39.66598   Planned        WBC 6972.280962
15:       8004 39.66598   Planned Hematocrit   39.878688
16:       8004 39.66598   Planned Hemoglobin   14.888570

36.3 See also

36.4 Resources

© 2025 E.D. Gennatas